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Abstract. We show that a spin-up electron from a normal metal entering a superconductor propagates as a
composite object consisting of a spin-down hole and a pair in the condensate. This leads to a factorization
of the non local conductance as two local Andreev reflections at both interfaces and one propagation in the
superconductor, which is tested numerically within a one dimensional toy model of reflectionless tunneling.
Small area junctions are characterized by non local conductance fluctuations. A treatment ignoring weak
localization leads to a Thouless energy inverse proportional to the sample size, as observed in the numerical
simulations. We show that weak localization can have a strong effect, and leads to a coupling between
evanescent quasiparticles and the condensate by Andreev reflections “internal” to the superconductor.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 74.78.Na
Mesoscopic and nanoscale systems – 74.78.Fk Multilayers, superlattices, heterostructures

1 Introduction

Correlated pairs of electrons can be manipulated in solid
state devices by extracting Andreev pairs from a con-
ventional superconductor, being a condensate of Cooper
pairs. This process is known as Andreev reflection [1] at a
normal metal / superconductor (NS) interface. One con-
siders the future realization of devices designed for manip-
ulating separately one of the two electrons of an Andreev
pair and see the feedback on the other electron [2–7].
The question arises of exploring experimentally and un-
derstanding theoretically the properties of the simplest
of these devices: a source of spatially separated Andreev
pairs propagating in different electrodes forming, in short,
“non local” Andreev pairs. The possibility of realizing a
source of non local Andreev pairs has indeed aroused a
considerable interest recently, both theoretical [2–19] and
experimental [20,21].

In a theoretical prediction prior to the experi-
ments [20,21], Falci et al. [12] have obtained from lowest
order perturbation theory in the tunnel amplitudes a van-
ishingly small non local signal with normal metals. Russo
et al. [21] have obtained on the contrary a sizeable ex-
perimental non local signal in a three terminal structure
consisting of a normal metal / insulator / superconduc-
tor / insulator / normal metal (NISIN) trilayer. The goal
of our article is to provide a theory that, together with ref-
erence [19], contributes to the understanding of this exper-
iment [21], as well as related possible future experiments

a e-mail: melin@grenoble.cnrs.fr

on non local conductance fluctuations, and be consistent
with the other available experiment by Beckmann et al.
with ferromagnets [20].

Falci et al. [12] have discussed the two competing chan-
nels contributing to non local transport. An incoming elec-
tron in electrode “b” can be transmitted as an electron in
electrode “a”, corresponding to normal transmission in the
electron-electron channel (see the device on Fig. 1 for the
labels “a” and “b”). Conversely, it can be transmitted as
a hole in electrode “a” while a Cooper pair is transfered
in the superconductor. Transmission in the electron-hole
channel corresponds to a dominant “non local” Andreev
reflection channel that can lead to spatially separated, spin
entangled pairs of electrons. The outgoing particles in the
two transmission channels have an opposite charge, result-
ing in a different sign in the contribution to the current
in electrode “a”. With normal metals, not only have the
elastic cotunneling and crossed Andreev reflection an op-
posite sign in the non local conductance, but they are
exactly opposite within lowest order perturbation theory
in the tunnel amplitudes.

It was already established that non local transport
is dominated by elastic cotunneling for localized inter-
faces [16]. The superconductor can essentially be replaced
by an insulator for a very thin superconductor connected
by tunnel contacts to a normal metal (assuming that the
superconductor can still be described by BCS theory).
We show that this picture breaks down if the supercon-
ductor thickness is larger than the coherence length be-
cause transport is mediated by composite objects made of
evanescent quasiparticles and pairs in the condensate.
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Fig. 1. (Color online) Schematic representation of the electri-
cal circuit corresponding to the NISIN double interface inter-
polating between a localized contact for L ∼ λF (with λF the
Fermi wave-length) and extended interface for L � Lth(ω),
where Lth is the Thouless length corresponding to the energy
eVb. The current Ia through electrode “a” is determined in
response to a voltage Vb on electrode “b”, with Va = 0. The
dimensions R (superconductor thickness) and L (dimension of
the junction) are shown on the figure. The available experiment
by Russo et al. [21] corresponds to extended interface with L
of the order of 0.5 µm and R � 15 ÷ 200 nm.

On the other hand, we find that small area junctions
are controlled by a different physics with fluctuations of
the non local conductance. We find on the basis of an
evaluation of the diffuson in a superconductor, that the
Thouless energy is inverse proportional to the system size,
which matches our numerical simulations. We find also
a possible large coupling to the condensate provided by
weak localization in the superconductor.

The article is organized as follows. The factorization of
non local processes as two local Andreev reflections and
a non local propagation is discussed in Section 2. The
factorization of the non local conductance is illustrated in
Section 3 in the case of one dimensional models (the Blon-
der, Thinkham, Klapwijk (BTK) model [22] and a Green’s
function model). The Thouless energy of non local conduc-
tance fluctuations is examined in Section 4 on the basis
of the evaluation of the diffuson. Numerical simulations
are presented in Section 5. The role of weak localization
is pointed out in Section 6. Concluding remarks are given
in Section 7.

2 Factorization of the non local resistance

2.1 Existing results for eVb � Eth(L)

The diagram corresponding to the non vanishing lowest or-
der process of order T 4 (with T the normal transparency)
is shown in Figure 2a. This diagram is local with respect
to excursions parallel to the interfaces if the bias voltage
energy eVb is much larger than the Thouless energy Eth(L)
associated to the dimension L of the junction parallel to
the interface (see Fig. 1), as it is the case in the exper-
iment by Russo et al. [21]. The corresponding non local
conductance

Ga,b(Vb) =
∂Ia

∂Vb
(Vb), (1)
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Fig. 2. (Color online) The diagrams representing the lowest
order processes of order T 4. The diagram (a), local with respect
to a propagation in the normal electrodes, was introduced in
reference [16]. The diagram (b) is its non local counterpart. “1”
and “2” correspond to the electron and hole Nambu labels. The
diagram on (b) factorizes in two Andreev reflections at both
interfaces, and a non local propagation in the superconductor.
The electron line crosses 8 times the interfaces, so that the
diagrams are of order T 4, where T ∝ (t/εF )2 is the normal
transparency, with t the tunnel amplitude and εF the Fermi
energy.

where Ia and Vb are defined in Figure 1, is given by [16,19]

Ga,b(Vb) = −e2

h
NchT

4 ξ

l
(S)
e

∆2

∆2 − (eVb)2
exp

[
−

(
2R

ξ

)]
,

(2)
where Nch is the number of conduction channels, ∆ the
superconducting gap, ξ the superconducting coherence
length, l

(S)
e the superconductor elastic mean free path,

T the normal local transparency, and the overline is an
average over disorder. The local Andreev conductance is
given by

Gloc(Vb) = 2
e2

h
NchT 2 ∆2

∆2 − (eVb)2
, (3)

where we used the ballistic result without disorder because
of the condition eVb � Eth(L).

The resistance matrix probed in the experiment [21] is
the inverse of the conductance matrix calculated theoret-
ically:

[Ra,a(Vb) Ra,b(Vb)
Rb,a(Vb) Rb,b(Vb)

]
=

[Ga,a(Vb) Ga,b(Vb)
Gb,a(Vb) Gb,b(Vb)

]−1

, (4)

from what we deduce that the non local resistance
Ra,b(Vb) is given by

Ra,b(Vb) =
−Ga,b(Vb)

[Gloc(Vb)]2 − Ga,b(Vb)Gb,a(Vb)
, (5)

that simplifies into

Ra,b(Vb) � − Ga,b(Vb)
[Gloc(Vb)]

2 (6)



S. Duhot and R. Mélin: Thouless energy of a superconductor from non local conductance fluctuations 259

e

h

e

e

Normal Interface

e

e

e e

h

h h

h

e

h e e

h

h

h

h

h

e

e

e

h

h

e

e

h

e

e

h

e

e

h

h

e e

h

h

h

e

e

e e

h

e

e

e

metal "b"

Normal 
metal "a"

InterfaceSuperconductor

(a)

(b)

(c)

Fig. 3. (Color online) Schematic representation of (a): the formation of composite objects at the interfaces with a ballistic
superconductor; (b): the sequential conversion of the composite objects in the bulk of the superconductor in the absence of
weak localization; (c): the scattering induced by weak localization.

if the thickness of the superconductor is larger than the
superconducting coherence length ξ, and leads to

Ra,b(Vb) =
1

4Nch

h

e2

(
ξ

l
(S)
e

)

×
(

∆2 − (eVb)2

∆2

)
exp (−2R/ξ). (7)

The non local resistance at low bias is positive (dominated
by elastic cotunneling), as found in reference [16]. The case
of extended interfaces is addressed in reference [19].

2.2 Case eVb � Eth(L)

Now, if the bias voltage energy eVb is smaller than the
Thouless energy Eth(L), the lowest order diagram of or-
der T 4 becomes non local in the normal electrodes (see
Fig. 2b). The diagram in Figure 2b corresponds to two
Andreev reflections in the normal electrodes, connected
by a propagation in the superconductor, so that the non
local conductance factorizes into

Ga,b(Vb) =
S(Vb) [Gloc(Vb)]

2

Nch
, (8)

where S(Vb) is a transmission coefficient of the supercon-
ductor. Using equation (6), we find that the crossed resis-
tance

Ra,b(Vb) = −S(Vb)
Nch

(9)

does not depend on the local conductances. The scaling
between the local and non local conductances is tested in
Section 3 for the generalization of the model of reflection-
less tunneling at a single interface introduced by Melsen
and Beenakker [23].

The factorization of the Andreev reflections at both
interfaces suggests that part of the current is carried by
pairs in the condensate. We thus arrive at the notion of
the transport of a composite object made of an evanescent
quasiparticle and a pair in the condensate: an electron
from a normal electrode is transmitted in the supercon-
ductor as a quasi-hole and a pair in the condensate (see
Fig. 3a). The consequences of this qualitative picture are
considered below.

Finally, we note that the factorization of two Andreev
reflections at the interfaces is also valid if eVb � Eth(L)
(see Sect. 2.1), as in the experiment by Russo et al. [21].
This is because the normal Green’s functions are vanish-
ingly small at zero energy in a superconductor.

3 One dimensional models

3.1 Blonder, Tinkham, Klapwijk (BTK) approach

3.1.1 Non local conductance

Let us consider now a one dimensional model of NISIN
double interface within the BTK approach [22,24] (see
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Fig. 4. (Color online) Schematic representations of the one di-
mensional models: (a) the BTK model for NISIN and (b) NIN-
ISININ junctions, and (c) the tight-binding model for NISIN
and (d) NINISININ junctions.

Fig. 4a). The goal is two-fold: i) obtain the expression of
the pair current in the superconductor, and ii) test the
factorization of the non local conductance in the case of
the model of reflectionless tunneling introduced by Melsen
and Beenakker [23].

The gap of the superconductor is supposed to have
a step-function variation as a function of the coordinate
z along the chain: ∆(z) = ∆θ(z + R/2)θ(R/2 − z), and
we suppose δ-function scattering potentials at the inter-
faces: V (z) = Hδ(z + R/2) + Hδ(z − R/2) [22]. The in-
terface transparencies are characterized by the parameter
Z = 2mH/�

2kF , where vF = �kF /m is the Fermi velocity,
with m the electron mass and kF the Fermi wave-vector.
The one dimensional model is a simplified version of the
genuine three terminal geometry with a supercurrent flow.
The current in the normal electrode “a” is not equal to
the injected current in electrode “b” because part of the
injected current has been converted in a supercurrent.

The unknown coefficients in the expression of the wave-
function are determined from the matching conditions at
the interfaces [22]. Of particular interest are the ampli-
tudes a′(kF R) and b′(kF R) of transmission in the electron-
hole and electron-electron channels from one normal metal
to the other, corresponding respectively to elastic cotun-
neling and non local Andreev reflection. Assuming R � ξ,
we expand a′ and b′ to lowest order in exp (−R/ξ), to find
the transmission coefficients

∫ 2π

0

d(kF R)
2π

|a′(kF R)|2 =
(

1
2Z4

− 1
2Z6

+
1

2Z8
+ ...

)
e−2R/ξ + O

(
e−4R/ξ

)
(10)

∫ 2π

0

d(kF R)
2π

|b′(kF R)|2 =
(

1
2Z4

− 1
2Z6

+
5

4Z8
+ ...

)
e−2R/ξ + O

(
e−4R/ξ

)
(11)

at ω = 0. We deduce the first non vanishing term in the
large-R, large-Z expansion of the non local transmission:

T ′ =
∫ 2π

0

d(kF R)
2π

(|a′(kF R)|2 − |b′(kF R)|2) (12)

= − 3
4Z8

e−2R/ξ + O
(
e−4R/ξ

)
.

In agreement with the Green’s function approach [16,19]
corresponding to the diagrams in Figure 2, the non local
conductance is dominated by elastic cotunneling and ap-
pears at order Z−8 ∼ T 4. In agreement with reference [16],
we find no non local Andreev reflection for highly trans-
parent interfaces corresponding to Z = 0.

3.2 Reflectionless tunneling

3.2.1 BTK approach

To discuss the form (9) of the crossed resistance, we in-
clude now multiple scattering in the normal electrodes
and consider two additional scatterers at positions z1 =
−L1/2 in the left electrode and z2 = L2/2 in the right
electrode, described by the potentials V ′(z) = H ′δ(z −
z1) + H ′δ(z − z2), and leading to the barrier parame-
ter Z ′ = 2mH ′/�

2kF (see Fig. 4b for the definitions of Z
and Z ′). This constitutes, for a double interface, the ana-
log of the model introduced by Melsen and Beenakker [23]
for a single interface. We average numerically the non local
transmission coefficient over the Fermi oscillation phases
ϕ1 = kF (R − L1)/2, ϕ = kF R and ϕ2 = kF (L2 − R).

The variations of the non local conductance at zero
bias as a function of Z ′ for a fixed Z are shown in Fig-
ure 5, as well as the corresponding non local conductance
for the NINISIN junction. The negative non local conduc-
tance at small Z1 for the NINISININ junction disappears
when increasing the precision of the integrals. The vari-
ation of the non local conductance in Figure 5 shows a
strong enhancement by the additional scatterers, like re-
flectionless tunneling at a single NIS interface [23].

3.2.2 Green’s functions: scaling between the local
and non local conductances

Considering the tight-binding model within Green’s func-
tions, the variation of the non local conductance of the
NINISININ junction as a function of t′ for a fixed t (see
Fig. 4d) is similar to the BTK model. Imposing the same
normal conductance in the BTK and in the tight-binding
models leads to Z = (1 − (t/T )2)/(2t/T ), where T is
the bulk hopping amplitude. The identification of Z to
t/T results in a good (but not perfect) agreement for
the non local conductance when the tight-binding and
BTK results are rescaled on each other. The non lo-
cal conductance Ga,b(Vb = 0, t/T, t′/T ) is shown in Fig-
ure 6 as a function of the local conductance Gloc(Vb =
0, t/T, t′/T ), fitted by Ga,b(Vb = 0, t/T, t′/T ) = S(Vb =
0) [Gloc(Vb = 0, t/T, t′/T )]2, corresponding to equation (9)
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Fig. 5. (Color online) Variation of the non
local conductance Ga,b (in units of e2/h) for
the junction in Figure 4c, with Z′ = Z1 =
Z4 and Z = Z2 = Z3 = 10. (a) ... (f) cor-
respond to an increasing values of the pre-
cision in the evaluation of the Fermi phase
factors related to the superconductor. We
have also shown the much smaller non local
conductance of the NINISIN junction, as a
function of Z1 for the NIN contact, with the
same value of Z for the NIS contacts.

Fig. 6. (Color online) Correlation between the nonlocal con-
ductance (x-axis) and the local conductance (y-axis) for the
peaks similar to Figure 5 as a function of t′/T for a fixed
t/T = 0.05 and (a) R/ξ = 5, (b) R/ξ = 4, (c) R/ξ = 3, and (d)

R/ξ = 2. The solid line is a fit to Ga,b(t
′/T ) ∝ [Gloc(t

′/T )]
2
.

for Nch = 1. The scaling is very well obeyed, showing the
validity of form (9) of the crossed resistance involving the
destruction of a pair in the condensate at one interface,
its propagation in the superconductor and its creation at
the other interface.

4 Thouless energy of a disordered
superconductor

4.1 Relevance to experiments

We consider now non local conductance fluctuations. The
total non local transmission coefficient is given by Ttot =
Te−e − Te−h, where Te−e and Te−h are the transmis-
sion coefficients in the electron-electron and electron-hole

channels respectively. As discussed in Section 2, one has
Ttot = 0 but

(Ttot)
2 = (Te−e)

2 + (Te−h)2 − 2(Te−eTe−h)2. (13)

Inspecting the corresponding lowest order diagrams shows
that Te−eTe−h = −(Te−e)

2, where we suppose that the
normal metal phase coherence length is vanishingly small,
therefore avoiding the specific effects of extended inter-
faces [19]. The root mean square of the non local con-
ductance fluctuations is thus proportional to (e2/h)T 2

while the average non local conductance is proportional
to (e2/h)T 4Nch (see Eq. (2)). The fluctuations are impor-
tant for small junctions such that T 2Nch � 1.

4.2 Diffusons in a superconductor

4.2.1 Evaluation of the diffusons

Let us first evaluate the Thouless energy of a superconduc-
tor in the absence of crossings between diffusons. Smith
and Ambegaokar [25] start from one extremity of the lad-
der diagram and calculate recursively the integrals over
the wave-vectors. Once the right-most integral in Figure 7
has been evaluated, one is left with a “ladder” with one
less rung, but with a different 2 × 2 matrix at the ex-
tremity. The four parameter recursion relations reduce to
a matrix geometric series in the sector (τ̂0, τ̂1), and to an-
other matrix geometric series in the sector (τ̂2,τ̂3), where
τ̂n are the four Pauli matrices, with τ̂0 the identity.

More precisely, we define the four matrix diffusons

D̂q,δω(τ̂n) = v2

∫
d3k

(2π)3
τ̂3Ĝ(k, ω)τ̂nĜ(k + q, ω + δω)τ̂3,

(14)
where n = 0, ..., 3, q = |q| is the modulus of the wave-
vector, and δω is small compared to the energy ω. The
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Fig. 7. (Color online) Schematic representation of the recur-
sive calculation of the matrix diffuson in the ladder approx-
imation used by Smith and Ambegaokar [25]. The integrals
over the wave-vectors are carried out recursively, starting from
the right of the diagram. The two horizontal black lines cor-
respond to the advanced and retarded Green’s functions. The
green dots correspond to the disorder vertices, and the vertical
red lines correspond to the impurity lines. We have shown the
Nambu labels (σA, σR) and (σ′

A, σ′
R) at the extremities of the

diffuson.

microscopic disorder scattering potential is given by v2 =
4πεF /τe, with εF the Fermi energy and τe the elastic scat-
tering time, related to the elastic scattering length le by
the relation le = vF τe. We find

D̂q,δω(τ̂0) = X
(
∆2τ̂0 − ω∆τ̂1

)
(15)

D̂q,δω(τ̂1) = X
(
ω∆τ̂0 − ω2τ̂1

)
, (16)

in the sector (τ̂0, τ̂1), and

D̂q,δω(−iτ̂2) = X

(
− 3D0∆δω

√
∆2 − ω2

2v2
F

τ̂3 (17)

−i(∆2 − ω2)τ̂2

)

D̂q,δω(τ̂3) = XD0δω

(
−D

2
0∆δω

4v4
F

τ̂3− 3i∆

2v2
F

√
∆2 − ω2τ̂2

)
,

in the sector (τ̂2, τ̂3). We used the notation

1
X

=
3D0(∆2 − ω2)

v2
F

[√
∆2 − ω2+

D0q
2

4
− ωδω

2
√

∆2 − ω2

]
,

(18)
where D0 is the diffusion constant.

4.2.2 Non local transmission coefficient

The relation between the diffusons in the superconductor
and non local transport is provided by the non local con-
ductance (1). The non local conductance G(2)

a,b (ω) of order
T 2 is related to the transmission coefficients according to

G(2)
a,b(ω) =

e2

h

[
T

(1,1)
(1,1) (ω) − T

(2,2)
(1,1) (ω)

]
, (19)

with

T
(σ′

A,σ′
R)

(σA,σR) (ω) = T 2ε2F

∫
d3q

(2π)3
eiq.R (20)

×
∫

d3k
(2π)3

ĜσA,σ′
A(k, ω)Ĝσ′

R,σR(k + q, ω).

The notation T
(σ′

A,σ′
R)

(σA,σR) (ω) corresponds to the transmis-
sion coefficient related to a diffuson with the Nambu la-
bels (σA, σR) for the advanced and retarded propagators
at one extremity, and the Nambu labels (σ′

A, σ′
R) at the

other extremity (see Fig. 7). The transmission coefficients
T

(1,1)

(1,1)(ω) and T
(2,2)

(1,1)(ω) encode elastic cotunneling and non
local Andreev reflection respectively. With the notations
in Section 4.1, we have T

(1,1)

(1,1)(ω) = Te−e(ω) for trans-

mission in the electron-electron channel, and T
(2,2)

(1,1)(ω) =
Te−h(ω) for transmission in the electron-hole channel. We
deduce from equation (18) that G(2)

a,b(ω) = 0: the average
non local conductance vanishes to order T 2, in agreement
both with Section 2 and with an early work [13] in the dis-
ordered case. The transmission coefficients T

(1,2)

(1,2)(ω) and

T
(2,1)

(2,1)(ω) involve the propagation of a pair in the conden-
sate in parallel to the quasiparticle channels, as in the
diagram in Figure 2b.

4.3 Thouless energy

The Thouless energy is defined from the non local con-
ductance fluctuations by the decay of the autocorrelation
of the non local conductance

〈[
Ga,b(ω)Ga,b(ω + δω) − Ga,b(ω)Ga,b(ω + δω)

]〉
ω

(21)

as δω increases, where 〈...〉ω denotes an average over the
energy ω in a given window.

The autocorrelation of the non local conductance de-
fined by equation (21) is related to the autocorrelation of
the transmission coefficients

〈T (σ′
1,σ′

2)

(σ1,σ2) (ω)T (σ′
3,σ′

4)

(σ3,σ4) (ω + δω)

− T
(σ′

1,σ′
2)

(σ1,σ2)(ω)T
(σ′

3,σ′
4)

(σ3,σ4)(ω + δω)〉ω. (22)

More precisely, the non local conductance to lowest order
in the tunnel amplitudes is given by

Ga,b(ω) = A
[
g1,1,A

a,b g1,1,R
b,a − g1,2,A

a,b g2,1,R
b,a

]
, (23)

where “1” and “2” refer to the electron and hole Nambu
components, “A” and “R” stand for advanced and re-
tarded, g1,1

a,b is a propagation from “a” to “b” in the
electron-electron channel, and g1,2

a,b in the electron-hole
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channel. The prefactor A, not directly relevant to our dis-
cussion, can be found in reference [16]. We find easily

Ga,b(ω)Ga,b(ω + δω) = A2
∑

k1,...,k4

ei(k1−k2+k3−k4)R (24)

[
gA
1,1(k1, ω)gR

1,1(k2, ω)gA
1,1(k3, ω + δω)gR

1,1(k4, ω + δω)

− gA
1,1(k1, ω)gR

1,1(k2, ω)gA
1,2(k3, ω + δω)gR

2,1(k4, ω + δω)

− gA
1,2(k1, ω)gR

2,1(k2, ω)gA
1,1(k3, ω + δω)gR

1,1(k4, ω + δω)

+ gA
1,2(k1, ω)gR

2,1(k2, ω)gA
1,2(k3, ω + δω)gR

2,1(k4, ω + δω)
]
.

The quantity

Sa,b(ω, ω + δω) = Ga,b(ω)Ga,b(ω + δω)

− Ga,b(ω)Ga,b(ω) (25)

is evaluated by discarding the Nambu components of
the type gA

1,1(k1, ω)gA
1,2(k2, ω + δω), much smaller than

gA
1,1(k1, ω)gA

1,1(k2, ω + δω) and gA
1,2(k1, ω)gA

2,1(k2, ω + δω)
if ω is small compared to ∆. In addition, we use

Ga,b(ω)Ga,b(ω) � Ga,b(ω + δω)Ga,b(ω + δω) (26)

within the small energy window that we consider. We ob-
tain

Sa,b(ω, ω + δω) =

2
(
T

(1,1)
(1,1) (R, ω, δω)

)2

+ 2
(
T

(2,2)
(1,1) (R, ω, δω)

)2

− 2
(
T

(1,1)
(1,1) (R, ω, 0)

)2

− 2
(
T

(2,2)
(1,1) (R, ω, 0)

)2

, (27)

where the Fourier transforms with respect to the spatial
variable of T

(1,1)
(1,1) (R, ω, δω) and T

(2,2)
(1,1) (R, ω, δω) are given

by

T
(1,1)
(1,1) (q, ω, δω) = T

(2,2)
(1,1) (q, ω, δω) = (28)

v2
F ∆2

3D2
0(∆2 − ω2)

[√
∆2 − ω2 + D0q2/4 − ωδω/2

√
∆2 − ω2

] ,

deduced from Section 4.2.1. The notation R stands for
the distance between the contacts “a” and “b”. Taking
the Fourier transform of equation (28), we obtain

Sa,b(ω, δω)
[
Ga,b(ω)Ga,b(ω)

]−1

= exp
(

i
√

3
R

ξ

ωδω

4(∆2 − ω2)

)
− 1, (29)

that dephases above the Thouless energy

Ec = δωc =
8π√

3
∆2 − ω2

ω

ξ

R
, (30)

for energies ω large compared to ∆
√

ξ/R, so that Ec is
much smaller than ω.

5 Numerical results

5.1 The different length scales in the simulations

The non local transport simulations are carried out in
a quasi-1D geometry, on a strip of longitudinal dimen-
sion L and of transverse dimension Ly, corresponding to
M transverse modes. We calculate non local transport
along the z direction. The trilayer geometry with an as-
pect ratio similar to the experiment by Russo et al. [21],
would require much larger system sizes to have a reason-
able separation between the different length scales in the
y direction while L is much larger than Ly. The relevant
length scales in the diffusive regime are given by increas-
ing order by the Fermi wave-length λF , the elastic mean
free path le, the superconducting coherence length ξ and
the sample size.

5.2 Ballistic system and small disorder

We use typically M = 10, L/a0 ranging from 80 to 100
for a method [26] based on the inversion of the Dyson ma-
trix, and much higher values of L/a0 (in units of the tight
binding model lattice spacing a0), for a complementary
method consisting in connecting together several conduc-
tors by a hopping self-energy, given the Green’s functions
of each conductor evaluated by the inversion of the Dyson
matrix. Disorder is introduced as in the Anderson model
by a random potential between −W and W .

The normalized transmission coefficient T ′(ω) that we
calculate numerically is related to the non local conduc-
tance by the relation

T ′(ω) =
h

e2
T−2G(2)

a,b(ω), (31)

where G(2)
a,b(ω) is the contribution of order T 2 to the non

local conductance, with T the normal transparency. The
transmission coefficient T ′(ω) defined by equation (31)
fluctuates around zero as a function of energy because
the wave-vectors of the different channels vary with en-
ergy. The characteristic energy scale in the oscillations of
the transmission coefficient is the ballistic normal state
Thouless energy associated to the dimension L (see Fig. 8
in the forthcoming Sect. 5.3).

5.3 Thouless energy of a disordered superconductor

Figures 8 and 9 show the energy dependence of the su-
perconducting transmission coefficient T ′(ω/∆) defined by
equation (31). The fluctuations of the transmission coef-
ficient are close to the ballistic limit result in the limit of
small disorder (see Fig. 8). We obtain regular fluctuations
of the transmission coefficient of a superconductor in the
diffusive limit where the normal transmission coefficient
is characterized by fluctuations (see Fig. 9). We used a
large number of realizations of disorder at a single energy
to show that the transmission coefficient averages to zero
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Fig. 8. (Color online.) Energy dependence of the supercon-
ducting transmission coefficient T ′(ω/∆) [defined by Eq. (31)]
through a diffusive superconductor on a strip with Ly/a0 = 10
and L/a0 = 100, in the limit of small disorder. The bold line
corresponds to the ballistic result, and the two other traces cor-
respond to two realizations of disorder with W/t0 = 0.5 and
le/a0 � 500. The ballistic coherence length is ξ/a0 � 33. This
figure has been obtained with a method based on the inversion
of the Dyson matrix.
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Fig. 9. (Color online) Energy dependence of the supercon-
ducting transmission coefficient T ′(ω/∆) (defined by Eq. (31))
through a diffusive superconductor on a strip with Ly/a0 = 10
and L/a0 = 100, in the diffusive limit. The two traces cor-
respond to different realizations of disorder corresponding to
W/t0 = 3 and le/a0 � 16. This figure has been obtained with
a method based on the inversion of the Dyson matrix.

because of disorder. This shows that the regular fluctu-
ations in the disordered system are genuinely related to
disorder, and do not have the same origin as in the ballis-
tic system.

To characterize the regular fluctuations, we calculate
the normalized autocorrelation of the transmission coeffi-

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5

C
(δ

ω
/∆

)

δω/∆

Superconductor

W/t0=3, L/a0=100
W/t0=3, L/a0=80

W/t0=4, L/a0=100

Fig. 10. (Color online) Autocorrelation function of the trans-
mission coefficient (see Eqs. (32, 33)), for (W/t0 = 3, L/a0 =
80), (W/t0 = 3, L/a0 = 100), and (W/t0 = 4,L/a0 = 100).
W/t0 = 3 corresponds to le/a0 � 16, and W/t0 = 4 corre-
sponds to le/a0 � 10. The errorbars are smaller than the size
of the symbols.
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Fig. 11. (Color online) Variation of the Thouless energy
Ec,1/∆ as a function of the system size L/a0 in a log-log plot,
for (a): W/t = 1 and le/a0 � 127 (b): W/t = 2 and le/a0 � 34.
The solid lines are a fit to Ec,a/∆ ∼ 1/L.

cient C(δω) = 〈A(ω, δω)/B(ω, δω)〉ω, with

A(ω, δω) = T ′(ω + δω)T ′(ω) (32)

B(ω, δω) =
√

T ′(ω + δω)T ′(ω), (33)

where 〈...〉ω is an average over the energy ω, as in equa-
tion (21). The autocorrelation C(δω) is characterized by
oscillatory damped oscillations (see Fig. 10), in contrast
to the autocorrelation of conductance fluctuations in the
normal case that is damped without oscillations. The en-
ergy scales Ec,1 and Ec,2 related to period of oscillations
and to the damping increase as the system size decreases
(see Fig. 10), in agreement with the expected behavior for
Thouless energies. Going to larger system sizes, we find
that Ec,1 scales like the inverse of the sample size (see
Fig. 11).
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Fig. 12. (Color online) (a) One of the Gorkov-Larkin-Khmelnitskii-Hikami (GLKH) boxes [30–32] in the superconducting case,
dressed by a diffuson. (b) The self-crossing of a diffuson with the superconducting GLKH box. (c) Another representation of
(b), with two additional diffusons at the entry and exit of the GLKH box. “A” and “R” stand for advanced and retarded.

The comparison between Figure 9 for (W/t0 = 3,
le/a0 � 16), and similar data for (W/t0 = 2, le/a0 � 34)
and (W/t0 = 4, le/a0 � 10) show that Ec,1 and Ec,2 have
a weaker dependence on the elastic mean free path than
for a normal diffusive system.

6 Effective scattering induced by weak
localization

We find a formal analogy between the calculation of
the non local conductance fluctuations in the preced-
ing section, and the linear response theory of collective
modes [27–29]. Namely, the non local conductance fluctua-
tions can be viewed as a generalized susceptibility in linear
response, but otherwise the two models involve rather dif-
ferent physical quantities. We show now that weak local-
ization can induce additional couplings to the condensate.
Evaluating all the Nambu labels at the two three-diffuson
vertices (see Fig. 12c) is possible in the limit ω � ∆ be-
cause of the constraint that the normal local Green’s func-
tions can be discarded in this limit that corresponds “in-
ternal” Andreev reflection processes as in Figure 3c. The
diagrams in Figure 12c then defines a set of transmission
coefficients modified by weak localization. With the nota-
tions A = T

(1,2)
(1,2) , B = T

(2,1)
(1,2) , C = T

(2,2)
(1,1) , D = T

(1,1)
(1,1) , we

find for the “renormalized” transmission coefficients

Ã = A + λ
[
AB(A + B)2 + D2(A2 + B2)

+ 2ABC2
]
+ O(λ2) (34)

B̃ = B + λ
[
AB(A + B)2 + C2(A2 + B2)

+ 2ABD2
]
+ O(λ2) (35)

C̃ = C + λD(A + B)(D2 + 3C2) + O(λ2) (36)

D̃ = D + λC(A + B)(C2 + 3D2) + O(λ2), (37)

with the perturbative parameter λ ∼ (τ2εF ∆)−4 that can
turn out to be large. Weak localization can thus lead
to a large effective scattering for the processes on Fig-
ure 3c with multiple imbricate Andreev reflections provid-
ing a coupling between the condensate and the evanescent
quasiparticle channels.

7 Conclusions

To conclude, we have provided a theory of non local con-
ductance fluctuations at normal metal / superconductor
double interfaces. First, reconsidering the case of the av-
erage non local conductance, we confirm that the central
role is played by higher order processes in the tunnel am-
plitude. We found that for these processes part of the non
local current circulates as pairs in the condensate, not only
as evanescent quasiparticles. The crossed conductance at
zero bias factorizes in the Andreev conductances at the
two interfaces, and a factor related to the propagation in
the superconductor. This factorization was tested in the
context of a model of reflectionless tunneling [23].

On the other hand we found numerically regular fluc-
tuations of the non local conductance. The Thouless en-
ergy inverse proportional to the system size obtained in
the simulations can be interpreted by a model ignoring
weak localization. Alternatively, an energy scale inverse
proportional to the system size could have received an in-
terpretation in terms of the Anderson [27]-Bogoliubov [28]
collective mode, which is not in contradiction with the fact
that weak localization can induce a strong coupling to the
condensate if the superconductor elastic mean free path is
sufficiently small. However, disorder in our simulations is
most likely not strong enough to correspond to this pos-
sibility. Finally, the Thouless energy of a normal cavity
appears also in circuit theory [33]. Our model for the con-
ductance fluctuations for small area junctions clarifies the
concept of Thouless energy intrinsic to a superconductor
but the model in its present form does not explain why an
effect is observed experimentally at the level of the aver-
age non local conductance, not at the level of fluctuations
as in our model. This issue of an effect on the average
crossed conductance is under investigation.
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6. J.M. Byers, M.E. Flatté, Phys. Rev. Lett. 74, 306 (1995)
7. G. Deutscher, D. Feinberg, App. Phys. Lett. 76, 487 (2000)
8. P. Samuelsson, E.V. Sukhorukov, M. Büttiker, Phys. Rev.
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